Full Laplace spectrum of distance spheres in symmetric spaces of rank one

نویسندگان

چکیده

We use Lie-theoretic methods to explicitly compute the full spectrum of Laplace--Beltrami operator on homogeneous spheres which occur as geodesic distance in (compact or noncompact) symmetric spaces rank one, and provide a single unified formula for all cases. As an application, we find resonant radii compact case, i.e., where there is bifurcation embedded constant mean curvature spheres, show that are stable locally rigid noncompact case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomogeneity One Actions on Noncompact Symmetric Spaces of Rank One

We classify, up to orbit equivalence, all cohomogeneity one actions on the hyperbolic planes over the complex, quaternionic and Cayley numbers, and on the complex hyperbolic spaces CHn, n ≥ 3. For the quaternionic hyperbolic spaces HHn, n ≥ 3, we reduce the classification problem to a problem in quaternionic linear algebra and obtain partial results. For real hyperbolic spaces, this classificat...

متن کامل

Ford Fundamental Domains in Symmetric Spaces of Rank One

We show the existence of isometric (or Ford) fundamental regions for a large class of subgroups of the isometry group of any rank one Riemannian symmetric space of noncompact type. The proof does not use the classification of symmetric spaces. All hitherto known existence results of isometric fundamental regions and domains are essentially subsumed by our work.

متن کامل

Rigidity of Rank-one Factors of Compact Symmetric Spaces

We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.

متن کامل

Singular Integrals on Symmetric Spaces of Real Rank One

In this paper we prove a new variant of the Herz majorizing principle for operators defined by K-bi-invariant kernels with certain large-scale cancellation properties. As an application, we prove L p-boundedness of operators defined by Fourier multipliers which satisfy singular differential inequalities of the Hörmander-Michlin type. We also find sharp bounds on the L p-norm of large imaginary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of The London Mathematical Society

سال: 2022

ISSN: ['1469-2120', '0024-6093']

DOI: https://doi.org/10.1112/blms.12650